ANSYS AIM 16.0
Overview

AIM Program Management
Today’s Simulation Challenges

• Leveraging simulation across engineering organizations
• Gaining simulation insights across multiple physics
• Process Compression and Knowledge Capture
• Modeling real world conditions
• Producing rapid and dependable results with maximum use of computing investment

Introducing: ANSYS AIM 16.0
AIM is an integrated solution for 3D engineering simulation encompassing the breadth of ANSYS physics in a single, modern user environment.
Simulation for Every Engineer

Engineering Challenges

• Effective design decisions require understanding of multiple physics

• Desire to leverage simulation early in the design process, but resource limited

• Many simulation tools have steep learning curves and are not suitable for occasional users

AIM Solution

• AIM is Multiple and Multiphysics, by design

• Templates and guided workflows enable every engineer to rapidly obtain meaningful results

• Customization and scripting tools allow experts to automate complex simulation solutions for their entire organizations
One Window, All Physics

Engineering Challenges

• Simulation-driven processes require complex workflows through multiple environments
• Learning simulation for a new physics is like learning a new language
• Silos between engineering groups are reinforced by use of separate tools

AIM Solution

• A single user environment designed for complete 3D engineering simulation to drive product development
• A common, intuitive, customizable user experience across all aspects of simulation
• Consistent workflows and user experience for seamless collaboration and reuse of data across Multiple and Multiphysics simulations
Process-Defined Solutions

Engineering Challenges

- Product development processes are as unique as products, but traditional software often dictates those processes.
- Knowledge of engineering and simulation best practices can be difficult to automate and deploy.
- Simulation tools are most effective when embedded in design systems.

AIM Solution

- Flexible workflows can be constructed based on the tasks and needs of each type of simulation.
- Designed for the deployment of customized simulation workflows to engineering groups.
- Built upon a native journaling and scripting language which enables all simulation steps to be recorded, customized, and replayed.

Model the Real Environment

Engineering Challenges

- Specification of real world conditions can be limited by simple, single-valued inputs
- Need for rapid evaluation of multiple design alternatives under a range of environments and conditions

AIM Solution

- Any input value or result can be defined via an expression to capture known conditions
- AIM is fully parametric and includes the necessary tools for rapid design exploration to investigate the entire operating environment
Proven, High Performance Simulation

Engineering Challenges

- Engineers want reliable and dependable results to allow rapid exploration of their design spaces
- Businesses need to maximize utilization of investments in parallel computing to obtain fast simulation results

AIM Solution

- AIM includes proven, accurate solver technology for multiple physics and multiphysics, with over forty years of continuous technology development
- All aspects of AIM (mesh generation, solution and post-processing) take advantage of today’s parallel computing architectures
ANSYS AIM

Physics Capabilities of AIM 16.0

- Steady-state fluid flow and heat transfer
- Static structural analysis
- Modal analysis
- Thermal conduction
- Electric conduction
- Thermal-stress
- Thermal-electric
- Thermal-electric-stress
- One-way FSI
Guided Simulation Process

- Templates provide automation and ease-of-use
 - Simulation templates provide task-based workflows that guide users through their simulation processes

A simulation template creates a task-based workflow from geometry import through results post-processing for a fluid-structure interaction simulation of an exhaust manifold.
Geometry Preparation with SpaceClaim

- **SpaceClaim included with AIM**
 - Geometry import from both CAD and neutral sources
 - Geometry simplification and defeaturing
 - Fluid volume extraction
 - Static geometry parameterization

Geometry imported from multiple sources, sliver surfaces removed from model, and fluid volume extracted for a butterfly valve assembly using SpaceClaim.
Model Configuration

- Import geometry from all major MCAD systems, SpaceClaim, and DesignModeler
- Configuration task allows imported geometry to be configured and/or suppressed for meshing and subsequent simulations

Butterfly valve model configured for fluid-structure interaction simulation; original imported geometry from SpaceClaim and configured fluid and structural geometries shown.
Meshing for All Physics

• Automated and user-defined mesh resolution based on engineering intent
 – Tetrahedral meshing with inflation
 – Hexahedral meshing

• Parallel mesh generation

 CFD mesh for external flow

 Structural mesh for static analysis
Fluid Physics

- Fluid physics capabilities
 - Steady-state, single-phase flow
 - Laminar and turbulent flows
 - Flow and heat transfer

Velocity streamlines through a butterfly valve

Pressure on a cut plane through flow control valve

Velocity streamlines over a rear spoiler
Structural Physics

- Structural physics capabilities
 - Linear static analysis
 - Modal analysis
 - Thermal-stress analysis

Clutch housing and frame, deflection and first principal stress from static loading
Thermal Physics

• Thermal physics capabilities
 – Steady-state thermal conduction
 – Convection and radiation boundary conditions
 – Thermal-stress analysis
 – Thermal-electric analysis
 – Thermal-electric-stress analysis

Temperature in finned heat sink

Heat flux vectors through package, thermal grease layer and heat sink
Electric Physics

- Electric physics capabilities
 - DC electric conduction
 - Thermal-electric analysis
 - Thermal-electric-structural analysis

Current density, temperature and equivalent stress in fuse element
Fluid-Structure Interaction

- One-way fluid force transfer from fluid to structural physics
 - Accurate mapping of both normal and tangential fluid forces

Deformation in butterfly valve based on fluid forces from steady-state flow solution.
Visualization

• Integrated post-processing for all physics
 – Contours, vectors, iso-surfaces, and streamlines
 – GPU and parallel CPU post-processing
 – Calculated values and expressions for quantitative output

Contour plot of displacement magnitude

Pressure on isosurface of constant velocity magnitude

Velocity vectors
HPC

- All calculations are parallel
 - On local machine
 - Mesh generation
 - Simultaneous part meshing for assemblies
 - Uses all available cores by default
 - Physics solution
 - 2 processes included at no extra cost
 - Supports ANSYS HPC Parallel Packs
 - Post-processing
 - Data analysis for iso-surfaces, etc.
Design Exploration

- **DesignXplorer included with AIM**
 - Design point studies, design of experiments and robust design

Design of experiments solution for a thermoelectric cooler and package assembly, temperature and current density shown for base TEC design.
Powerful Expression Language

• Full use of expressions
 – All model inputs can include expressions

Specify a velocity profile on inlet boundary condition using autocomplete with a previously-defined named expression.
Integrated, context-sensitive and video-based Help System
Automation and Customization

- Full journaling and scripting
- Record, customize, replay and reuse simulation data via native, Python-based scripting
- Templates
- ACT extensions
AIM Frequent Release Schedule
Rapidly Expands Simulation Capabilities

AIM 16.0
Essential Capabilities

AIM 16.1
Increased Breadth and Depth

AIM 16.2
Increased Breadth and Depth
ANSYS AIM

Simulation for Every Engineer!

- Immersive user experience
- Guided workflows
- Multiple physics
- Multiphysics
- Automation and customization
- Design optimization
ANSYS AIM
Simulation for Every Engineer!